论文部分内容阅读
为了将视频分割成镜头,目前的方法都是提取某些特征然后构造不同的相异性函数。然而,太多的特征就会降低镜头分割算法的效率。因此,有必要对每一个镜头检测决策进行特征约简。基于此,提出了基于粗糙集和模糊聚类的分类方法并得到了相应的决策规则。针对新闻场景的特殊性,将镜头分割成突变过渡、渐变过渡以及无场景变化3类。用超过2个小时的新闻视频所做的实验获得了96.5%的查全率和97.9%的准确率。