论文部分内容阅读
目的为解决传统阴影恢复形状(SFS)算法由于光源方向初始信息估计不准确,恢复的物体表面过于光滑,3维表面形状误差较大等问题,建立了基于径向基函数神经网络的反射模型,并对传统的神经网络进行了改进。方法建立的基于径向基函数(SFS)神经网络的从阴影恢复形状反射模型代替了传统方法中采用的理想朗伯体表面反射模型。该模型利用径向基函数优秀的局部映射和函数逼近能力来处理SFS问题,通过网络训练过程中的权值代替物体所受到的初始光源信息,解决了传统算法在进行计算时,必须已知光源参数的限制。在该网络模型中添加自适应学