论文部分内容阅读
经 LFG(ΔG~(γ→a))-Mogutnov(ΔG_(Fe)~(γ→a))、徐祖耀(Shu-A)(ΔG~(γ→a))-Orr-Chipman(ΔG_(Fe)~(γ→a))、徐祖耀(Shu-B)(ΔG~(γ→a))-Orr-Chipman(ΔG_(Fe)~(γ→a))组合,均可算得 Fe-Mn-C 合金的 Ms 温度且与实验值十分符合.所得结果经数学处理,得 Fe-Mn-C 系 Ms 与成分的关系为:Ms(K)=817.4-7513.4xc-4141.9x_(Mn)-32083.5x_Cx_(Mn)(LFG)Ms(K)=829.9-7580.5x_C-4166.0x_(Mn)-15727.8x_Cx_(Mn)(SHU-A)Ms(K)=829.2-7276.1x_C-2915.4x_(Mn)-43825.7x_Cx_(Mn)(SHU-B)其线性相关系数均大于0.992.C 和 Mn 浓度均使合金的 Ms 线性地降低,而碳的作用几乎是Mn 的两倍.处理中引入了合金元素交互作用项(x_Cx_(Mn)),表明 C,Mn 相互加剧对 Ms 的影响。随含 C,Mn 量的增加,相变驱动力均单调地增加,而不存在奇异点.Ms 和相变驱动力的计算值均依赖于ΔG_(Fe)~(γ→a)项.
(ΓG) (γG-a)), Org-Chipman (ΔG_ (a)) and Mogutnov (ΔG_ (Fe) (γ → a) and Shu-B (ΔG ~ (γ → a)) - Orr-Chipman (ΔG_ (Fe) ~ (γ → a) (Ms) = 817.4-7513.4xc-4141.9x_ (Mn) -32083.5x_Cx_ (Mn) was obtained by the mathematical treatment of the obtained results. ) (LFG) Ms (K) = 829.9-7580.5x_C-4166.0x_ (Mn) -15727.8x_Cx_ (Mn) (SHU-A) Ms (K) = 829.2-7276.1x_C- 2915.4x_ (Mn) -43825.7x_Cx_ (Mn ) (SHU-B) were all greater than 0.992.C and Mn concentrations all decreased the Ms of the alloy linearly, while the carbon almost doubled the Mn content. The alloy interaction element (x_Cx_ ( Mn)), indicating that C, Mn intensify each other on the impact of Ms. With the increase of C and Mn, the driving force of phase transformation monotonically increases, but there is no singularity point.The calculated values of Ms and phase transformation driving forces depend on ΔG_ (Fe) ~ (γ → a).