论文部分内容阅读
Drawbacks of low efficiency and high cost of the electrode materials have restricted the wide applications of the thermo-electrochemical cells(TECs). Due to high specific areas and electrical conductivities, the low cost multi-walled carbon nanotubes(MWNTs) are promising alternative electrode materials. In this work, the MWNT films of up to 16 cm~2 were synthesized on stainless steel substrates by the electrophoretic deposition(EPD) to make the thermo-electrochemical electrodes. MWNT electrodes based on TECs were characterized by cyclic voltammetry and the long-term stability tests with the potassium ferri/ferrocyanide electrolyte. The TECs reached the current density of 45.2 A m~(-2) and the maximum power density of 0.82 W m~(-2). The relative power conversion efficiency of the MWNT electrode is 50 % higher than that for the Pt electrode. Meanwhile, the TECs was operated continuously for 300 h without performance degradation. With the priorities of low cost and simple fabrication, EPD-based MWNT TECs may become commercially viable.
Drawbacks of low efficiency and high cost of the electrode materials have restricted the wide applications of the thermo-electrochemical cells (TECs). Due to high specific areas and electrical conductivities, the low cost multi-walled carbon nanotubes (MWNTs) are promising alternative electrodes materials. In this work, the MWNT films of up to 16 cm ~ 2 were synthesized on stainless steel substrates by the electrophoretic deposition (EPD) to make the thermo-electrochemical electrodes. MWNT electrodes based on TECs were characterized by cyclic voltammetry and the long -term stability tests with the potassium ferri / ferrocyanide electrolyte. The TECs reached the current density of 45.2 A m -2 and the maximum power density of 0.82 W m -2. The relative power conversion efficiency of the MWNT electrode is 50% higher than that for the Pt electrode. With the priorities of low cost and simple fabrication, EPD -based MWNT TECs may become commercially viable.