论文部分内容阅读
证明了{n64n3+16n2+72n+1564n3-16n2+72n-15∫π20sinnxdx为严格单调减少数列,且极限为π2,因而得π64n3-16n2+72n-152n64n3+16n2+72n+15<∫π20sinnxdx<π64n3+208n2+296n+1672n+164n3+176n2+232n+105,将Wallis不等式改进为512n3-64n2+144n-15πn512n3+64n2+144n+15<2n-1!!2n!!<512n3+832n2+592n+167