论文部分内容阅读
在高原山地地区,传统遥感分类方法分类精度低,而标准BP神经网络分类方法在实际应用中也难以胜任。探讨对数据源主成分分析特征选择的基础上,用量化共轭梯度法改进标准BP算法,采用GA优化BP网络的隐层神经元数目、初始权重。并以香格里拉县ETM+遥感图像为例,在DEM地形数据辅助下,训练网络使其收敛,仿真输出。结果表明,其分类总精度为84.52%,Kappa系数为0.8317,比最大似然法分类精度提高了9.08个百分点,验证了GA优化的BP网络遥感图像分类的可行性和有效性。