论文部分内容阅读
【内容摘要】“研究性学习”旨在让学生以研究者的身份在研究中学习,增强学生的主体意识,促进学生学会学习。本文是在对高中阶段开展研究性学生的理论进行学习的基础上,结合高中数学新教材教学中开展研究性学习的实践,就研究性学习的概念、特点、目标,高中数学研究性学习的含义、数学研究性学习课题的选择等方面激发学生的学习兴趣,培养学生的实践能力、创新能力,提高学生的综合素质。
【关键词】高中数学 研究性学习 素質教育
随着素质教育的全面推进,“创新精神与实践能力”的培养已成为素质教育的核心。问题解决能力就是“创新精神与实践能力”在数学教育领域的具体体现,是一种重要的数学素质。研究性学习就是要让学生主动地参与研究过程,获得亲身体验,培养其良好的科学态度和学会进行科学研究的方法,并不在乎能不能取得什么成果或发现。研究性学习的素材可以是已有定论的东西(如定理、公式)也可以是未知领域,答案不确定、不唯一、丰富多彩都有可能,但提出的课题对学生必须有价值、有意义,符合学生实际。
一、研究性学习的目标
研究性学习是学生在老师指导下,在学科领域或现实生活情境中,通过学生自主探究式的学习研究活动,在摄取已有知识或经验的基础上,经过同化、组合和探究,获得新的知识、能力和态度,发展创新素质的一种学习方式。实施以培养创新精神和实践能力为重点的素质教育,关键是改变教师的教学方式和学生的学习方式。设置研究性学习的目的在于改变学生以单纯地接受教师传授知识为主的学习方式,为学生构建开放的学习环境,提供多渠道获取知识、并将学到的知识加以综合应用于实践的机会,培养创新精神和实践能力。研究性学习强调对所学知识、技能的实际运用,注重学习的过程和学生的实践与体验。需要注重以下几项具体目标:
1.获取亲身参与研究探索的体验
研究性学习强调学生通过自主参与类似于科学研究的学习活动,获得亲身体验,逐步形成善于质疑、乐于探究、勤于动手、努力求知的积极态度,产生积极情感,激发他们探索、创新的欲望。
2.培养发现问题和解决问题的能力
研究性学习通常围绕一个需要解决的实际问题展开。在学习的过程中,通过引导和鼓励学生自主地发现和提出问题,设计解决问题的方案,收集和分析资料,调查研究,得出结论并进行成果交流活动,引导学生应用已有的知识与经验,学习和掌握一些科学的研究方法,培养发现问题和解决问题的能力。
3.培养收集、分析和利用信息的能力
研究性学习是一个开放的学习过程。在学习中,培养学生围绕研究主题主动收集、加工处理和利用信息的能力是非常重要的。通过研究性学习,要帮助学生学会利用多种有效手段、通过多种途径获取信息,学会整理与归纳信息,学会判断和识别信息的价值,并恰当的利用信息,以培养收集、分析和利用信息的能力。
4.学会分享与合作
合作的意识和能力,是现代人所应具备的基本素质。研究性学习的开展将努力创设有利于人际沟通与合作的教育环境,使学生学会交流和分享研究的信息、创意及成果,发展乐于合作的团队精神。
二、高中数学研究性学习在课堂教学中的实施
1.数学研究性学习
数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。数学研究性学习更加关注学习过程。
数学研究性学习的材料不仅仅是教师自己提供的,而且教师应鼓励学生通过思考、调查、查阅资料等方式概括出问题,甚至可以通过日常生活情景提出数学问题,进而提炼成研究性学习的材料。在研究性学习的过程中,学生是学习的主人,是问题的研究者和解决者,是主角,而教师则在适当的时候对学生给予帮助,起着组织和引导的作用。
2.数学研究性学习课题的选择
数学研究性学习课题主要是指对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。要充分体现学生的自主活动和合作活动。研究性学习课题应以所学的数学知识为基础,并且密切结合生活和生产实际。新高中数学新教材将按《新大纲》的要求编入以下课题,供参考选用,当然教学时也可由师生自拟课题。提倡教师和学生自己提出问题。
新高中数学新教材研究性学习参考课题有六个:数列在分期付款中的应用,向量在物理中的应用,线性规划的实际应用,多面体欧拉定理的发现;杨辉三角,定积分在经济生活中的应用。其教学目标是:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力;(4)以研究报告或小论文等形式反映研究成果,学会交流。
3.数学开放题与研究性学习
研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,例如高考数学题中的存在性问题、信息迁移题、结论探索性问题、主观试题客观化、填空题选择化、条件开放题、结论和条件探索开放等。
【关键词】高中数学 研究性学习 素質教育
随着素质教育的全面推进,“创新精神与实践能力”的培养已成为素质教育的核心。问题解决能力就是“创新精神与实践能力”在数学教育领域的具体体现,是一种重要的数学素质。研究性学习就是要让学生主动地参与研究过程,获得亲身体验,培养其良好的科学态度和学会进行科学研究的方法,并不在乎能不能取得什么成果或发现。研究性学习的素材可以是已有定论的东西(如定理、公式)也可以是未知领域,答案不确定、不唯一、丰富多彩都有可能,但提出的课题对学生必须有价值、有意义,符合学生实际。
一、研究性学习的目标
研究性学习是学生在老师指导下,在学科领域或现实生活情境中,通过学生自主探究式的学习研究活动,在摄取已有知识或经验的基础上,经过同化、组合和探究,获得新的知识、能力和态度,发展创新素质的一种学习方式。实施以培养创新精神和实践能力为重点的素质教育,关键是改变教师的教学方式和学生的学习方式。设置研究性学习的目的在于改变学生以单纯地接受教师传授知识为主的学习方式,为学生构建开放的学习环境,提供多渠道获取知识、并将学到的知识加以综合应用于实践的机会,培养创新精神和实践能力。研究性学习强调对所学知识、技能的实际运用,注重学习的过程和学生的实践与体验。需要注重以下几项具体目标:
1.获取亲身参与研究探索的体验
研究性学习强调学生通过自主参与类似于科学研究的学习活动,获得亲身体验,逐步形成善于质疑、乐于探究、勤于动手、努力求知的积极态度,产生积极情感,激发他们探索、创新的欲望。
2.培养发现问题和解决问题的能力
研究性学习通常围绕一个需要解决的实际问题展开。在学习的过程中,通过引导和鼓励学生自主地发现和提出问题,设计解决问题的方案,收集和分析资料,调查研究,得出结论并进行成果交流活动,引导学生应用已有的知识与经验,学习和掌握一些科学的研究方法,培养发现问题和解决问题的能力。
3.培养收集、分析和利用信息的能力
研究性学习是一个开放的学习过程。在学习中,培养学生围绕研究主题主动收集、加工处理和利用信息的能力是非常重要的。通过研究性学习,要帮助学生学会利用多种有效手段、通过多种途径获取信息,学会整理与归纳信息,学会判断和识别信息的价值,并恰当的利用信息,以培养收集、分析和利用信息的能力。
4.学会分享与合作
合作的意识和能力,是现代人所应具备的基本素质。研究性学习的开展将努力创设有利于人际沟通与合作的教育环境,使学生学会交流和分享研究的信息、创意及成果,发展乐于合作的团队精神。
二、高中数学研究性学习在课堂教学中的实施
1.数学研究性学习
数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。数学研究性学习更加关注学习过程。
数学研究性学习的材料不仅仅是教师自己提供的,而且教师应鼓励学生通过思考、调查、查阅资料等方式概括出问题,甚至可以通过日常生活情景提出数学问题,进而提炼成研究性学习的材料。在研究性学习的过程中,学生是学习的主人,是问题的研究者和解决者,是主角,而教师则在适当的时候对学生给予帮助,起着组织和引导的作用。
2.数学研究性学习课题的选择
数学研究性学习课题主要是指对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。要充分体现学生的自主活动和合作活动。研究性学习课题应以所学的数学知识为基础,并且密切结合生活和生产实际。新高中数学新教材将按《新大纲》的要求编入以下课题,供参考选用,当然教学时也可由师生自拟课题。提倡教师和学生自己提出问题。
新高中数学新教材研究性学习参考课题有六个:数列在分期付款中的应用,向量在物理中的应用,线性规划的实际应用,多面体欧拉定理的发现;杨辉三角,定积分在经济生活中的应用。其教学目标是:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力;(4)以研究报告或小论文等形式反映研究成果,学会交流。
3.数学开放题与研究性学习
研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,例如高考数学题中的存在性问题、信息迁移题、结论探索性问题、主观试题客观化、填空题选择化、条件开放题、结论和条件探索开放等。