论文部分内容阅读
乳腺癌是女性主要癌症之一,若癌细胞进一步转移到骨骼、中枢神经系统和内脏,将会导致预后不良和总体生存率的降低。相比于传统的诊断乳腺肿瘤的病理学方法耗时且破费的特点,拉曼光谱的检测方法损伤较小且诊断周期短。本文利用吉林大学第一医院乳腺外科提供的实验检测样本,建立了新鲜乳腺病灶组织的拉曼光谱数据库,在特征选择的基础上应用支持向量机(SVM)方法构建了乳腺组织良恶性识别模型,并运用集成学习的思想以便快速鉴别乳腺病灶的类型。