论文部分内容阅读
The structures under different pressures, elastic properties, electronic structures and lattice vibrations of the X_2N_2O(X = C, Si, Ge) compounds are investigated by using the first-principle method. Based on the phonon density of state,the thermodynamic properties of the present compounds are studied under different pressures and at different temperatures. The structural parameters including the bond lengths and bond angles are in agreement with available experimental measurements and theoretical calculations. We employ the elastic theory to calculate the nine independent elastic constants(C_(ij)) and the derived elastic moduli(B, G, E, v). Results indicate that these X_2N_2O(X = C, Si, Ge) compounds are mechanically stable and show the brittle behaviors. The electronic properties of the present compounds are analyzed by using the band structure and density of states. The phonon dispersion calculations imply that the present compounds are dynamically stable. Based on the quasi-harmonic approximation, the calculations of the specific heat indicate that the temperature in a range of 0 K–1500 K and pressure in a range of 0 GPa–40 GPa have a large effect on the thermal quantities of Ge_2N_2O,compared with on those of the C_2N_2O and Si_2N_2O compounds.
The structures under different pressures, elastic properties, electronic structures and lattice vibrations of the X_2N_2O (X = C, Si, Ge) compounds are investigated by using the first-principle method. Based on the phonon density of state, the thermodynamic properties of the The structural parameters including the bond lengths and bond angles are in agreement with available experimental measurements and theoretical calculations. We employ the elastic theory to calculate the nine independent elastic constants (C_ (ij) ) and the derived elastic moduli (B, G, E, v). Results that that X_2N_2O (X = C, Si, Ge) compounds are mechanically stable and show the brittle behaviors. The electronic properties of the present compounds are analyzed by using the band structure and density of states. The phonon dispersion calculations imply that the present compounds are dynamically stable. Based on the quasi-harmon ic approximation, the calculations of the specific heat indicate that the temperature in a range of 0 K-1500 K and pressure in a range of 0 GPa-40 GPa have a large effect on the thermal quantities of Ge_2N_2O, compared with on those of the C_2N_2O and Si_2N_2O compounds.