论文部分内容阅读
研究快速变异的网络攻击准确检测问题,网络攻击如果在入侵过程中,发生较快的变异,使得入侵特征很难被准确的描述。传统的C均值聚类(FCM)算法在网络入侵检测中,多是依靠特征匹配完成检测,由于无法准确描述快速变异的入侵特征,导致网络入侵初始聚类中心选择不当,检测正确率不高。提出一种粒子群优化聚类算法的网络入侵检测方法,通过粒子群算法选择初始聚类中心,检测变异后入侵的最小化特征,采用FCM算法对最小特征进行聚类分析,完成快速变异网络入侵的检测。仿真结果表明,改进FCM算法能很好克服传统FCM算法的缺陷,有效