论文部分内容阅读
该文提出了基于粗糙集的K类模式分类器的体系结构(RSPCMNNC),基于粗糙集理论提出了三个预处理算法。简化了分类器的结构,降低了学习难度,有效地避免产生过多的子网。样本空间基于最大均衡的策略来划分,保证BP算法在学习过程中的有效性。实验结果表明,该文提出的RSPCMNNC分类器显示出更高的识别率,对于实际应用中多特征模式的识别问题,具有很大的实用价值。