论文部分内容阅读
使用TiCl4溶液对单晶TiO2纳米棒阵列(TNRs)进行修饰,通过在TiO2纳米棒表面合成TiO2纳米颗粒来提高TNRs的表面积,提高TNRs对量子点的吸附能力,并在此基础上研究了TiCl4修饰时间对基于单晶TNRs的CdS/CdSe量子点敏化太阳电池光伏性能的影响,同时结合强度调制光电流谱(IMPS)研究了TiO2纳米棒阵列的电子传输性能.结果表明:TiCl4修饰可以大幅提高基于单晶TNRs的CdS/CdSe量子点敏化太阳电池的光伏性能,在TiCl4修饰时间为60 h时,其短路电流密度和光电转换效率分别由修饰前的(2.93±0.07)mA·cm-2和0.36%±0.02%提高至(8.19±0.12)mA·cm-2和1.17%±0.07%.同时,IMPS测试表明电子在单晶TiO2纳米棒阵列中的传输速率高于在TiO2纳米颗粒薄膜中的传输速率,证明了单晶TiO2纳米棒阵列在电子传输方面的优越性.
Single crystal TiO2 nanorod arrays (TNRs) were modified with TiCl4 solution. The surface area of TNRs was increased and the adsorption capacity of TNRs to quantum dots was improved by synthesizing TiO2 nanoparticles on the surface of TiO2 nanorods. Based on these, the modification of TiCl4 Time on the photovoltaic performance of CdS / CdSe quantum dot sensitized solar cells based on single crystal TNRs was studied.At the same time, the electron transport properties of TiO2nanorod arrays were studied by intensity modulated photocurrent spectroscopy (IMPS) .The results show that TiCl4 modification can be greatly improved The photovoltaic performance of CdS / CdSe quantum dot sensitized solar cells based on single-crystal TNRs shows that the short-circuit current density and photoelectric conversion efficiency of the CdS / CdSe quantum dot sensitized solar cells are (2.93 ± 0.07) mA · cm- And 0.36% ± 0.02% to (8.19 ± 0.12) mA · cm -2 and 1.17% ± 0.07%, respectively.At the same time, the IMPS test showed that the transfer rate of electrons in single crystal TiO2 nanorod arrays was higher than that in TiO2nanoparticle films Of the transmission rate, proved the single crystal TiO2 nanorod arrays in the superiority of electronic transmission.