论文部分内容阅读
针对目前分类算法对降水预测过程存在着泛化能力低、精度不足的问题,提出改进Adaboost算法集成反向传播(BP)神经网络组合分类模型。该模型通过构造多个神经网络弱分类器,赋予弱分类器权值,将其线性组合为强分类器。改进后的Adaboost算法以最优化归一化因子为目标,在提升过程中调整样本权值更新策略,以此达到最小化归一化因子的目的,从而确保增加弱分类器个数的同时降低误差上界估计,通过最终集成的强分类器来提高模型的泛化能力和分类精度。选取江苏境内6个站点的逐日气象资料作为实验数据,建立7个降水等级的预报