论文部分内容阅读
In-situ composites based on dispersed poly (ethylene terephthalate) (PET) or polyamide (PA), and continuous polyethylene (PE) were prepared through a single screw extruder of Haake rheometer system with a rod-die relatively small in diameter. The extrudate was drawn at a drawing ratio of 3.1, and then quickly cooled in cold water. The specimens were obtained by injection molding at processing temperatures less than 190(C), far below the melting temperature of PET (265(C)) and PA (230(C)), which can maintain the solid state of PET and PA microfiber phase in the composites. Morphological observation with scanning electron microscopy (SEM) indicated that PET and PA can more or less form in-situ microfibers at compositions studied (0~20 wt pct PET or PA), and especially, PET and PA were almost deformed into fibers at the concentration of 15 wt pct. Tensile strength and modulus of the blends reinforced by PET or PA microfibers showed to be increased from the tensile test results. The most noticeable improveme
In-situ composites based on dispersed poly (ethylene terephthalate) (PET) or polyamide (PA), and continuous polyethylene (PE) were prepared through a single screw extruder of Haake rheometer system with a rod-die relatively small in diameter. was drawn at a drawing ratio of 3.1, and then quickly cooled in cold water. The specimens were obtained by injection molding at processing temperatures less than 190 (C), far below the melting temperature of PET (265 (C)) and PA 230 (C)), which can maintain the solid state of PET and PA microfiber phase in the composites. Morphological observation with scanning electron microscopy (SEM) indicated that PET and PA can more or less form in-situ microfibers at compositions studied (0 ~ 20 wt pct PET or PA), and especially, PET and PA were almost deformed into fibers at the concentration of 15 wt pct. Tensile strength and modulus of the blends reinforced by PET or PA microfibers showed to be increased from the tensile test results The most n oticeable improveme