论文部分内容阅读
结合原子间短程作用势(Brenner势)和长程作用势(Lennard-Jones势),利用分子动力学方法对各种锥角的碳纳米锥进行拉伸和压缩实验,获得其载荷-应变关系曲线、受拉/压载荷极限、应变极限和构形演变等力学特性,并与等量原子组成的碳纳米管进行比较研究.研究结果表明,等量碳原子组成的碳纳米锥的受拉/压载荷极限随着锥角的增大先是增大后减小,受拉/压应变极限则随着锥角的增大而增大.与碳纳米锥相比,等量碳原子组成的碳纳米管的受拉/压载荷极限和应变极限显得既不突出也不逊色.在受压构形演化方面,与碳纳米管丰富的径向屈曲/扭转/侧向屈曲组合形变不同,112.88°和83.62°锥角的碳纳米锥受压沿轴向完美内陷,而60.0°和38.94°锥角的碳纳米锥受压发生侧向屈曲.
Based on the Brenner potential and Lennard-Jones potential, molecular dynamics experiments were performed on the carbon nanocones with various taper angles to obtain the load-strain curve. Tension / compression load limit, strain limit and shape evolution and other mechanical properties, and compared with the same amount of carbon nanotubes. The results show that the carbon nanotubes with equal carbon atoms tensile / compressive load The limit increases and then decreases with the increase of cone angle, and the limit of tension / compression strain increases with the increase of cone angle.Compared with carbon nanocone, carbon nanotubes Tensile / compressive load limit and strain limit are neither prominent nor inferior.Compared with the rich radial buckling / torsion / lateral buckling deformation of carbon nanotubes in the evolution of compression configuration, the deformation of 112.88 ° and 83.62 ° cone Angular carbon nano-cone compression in the axial perfect invaginations, and 60.0 ° and 38.94 ° cone angle of the carbon nano-cone lateral buckling occurs.