论文部分内容阅读
分数阶傅里叶变换是信号处理与分析的一个重要工具,通过将图像信号投影到不同角度的时频平面可以表征图像的内容信息,其在人脸识别任务中显示出很好的性能。但是分数阶傅里叶变换存在阶次选择的问题,即在没有先验知识的情况下,无法预先知道哪一个阶次的分数阶傅里叶变换域特征具有最好的判别性能。受机器学习中的多核学习理论启发,本文探讨了分数阶傅里叶变换中阶次选择问题和多核学习理论的联系,通过将不同阶次的分数阶傅里叶变化域特征的线性核矩阵作为多核学习网络的输入,结合支持向量机,交替优化更新多核网络中的系数和支持向量机的