论文部分内容阅读
It has been shown that transmit correlation causes a signal-to-noise ratio (SNR) loss in the zero forcing (ZF) receiver for V-BLAST (Vertical Bell LAbs LAyered Space-Time) system. In this paper, we investigate the transmit correlation effect on the ZF receiver with successive interference cancellation (SIC). We show that such an unfavorable condition leads to twofold effects on the performance degradation. In addition to the immediate SNR loss, the transmit correlation can increase the propagation factor to spread decision error significantly. These two effects are evaluated analytically. We derive the probability density function (pdf) of the effective SNR at each decoded stream, and hence accurately quantify the SNR loss. We also calculate the decision error propagation factor in terms of its second moment. In particular, we show that transmit correlation can cause a stable component of error propagation which does not decline during the SIC procedure. Finally, we conduct the simulation to verify the analytical results.
It has been shown that transmit correlation causes a signal-to-noise ratio (SNR) loss in the zero forcing (ZF) receiver for V-BLAST (Vertical Bell Labs LAimed Space-Time) correlation effect on the ZF receiver with successive interference cancellation (SIC). We show that such an unfavorable condition leads to twofold effects on the performance degradation. In addition to the immediate SNR loss, the transmit correlation can increase the propagation factor to spread decision error We derive the probability density function (pdf) of the effective SNR at each decoded stream, and specifically accurately quantify the SNR loss. We also calculate the decision error propagation factor in terms of its second moment. In particular, we show that transmit correlation can cause a stable component of error propagation which does not decline during the SIC procedure. Finally, we conduct the simulat ion to verify the analytical results.