论文部分内容阅读
朴素贝叶斯分类假定类条件独立,使得所选数据集的条件属性集在预处理时必须进行属性约简,如果处理不当,就会造成分类的不准确.本文分别对在训练集上随机选取的属性子集组成粒子,构造适应度函数,从而构建了朴素贝叶斯分类器,并利用量子粒子群算法对分类效果进行择优操作.实验证明,其分类效果优于传统的朴素贝叶斯分类方法.