【摘 要】
:
The removal of trace propyne (C3H4) from propyne/propylene (C3H4/C3H6) mixtures is a technical and challenging task during the production of polymer-grade propylene in view of their very similar size and physical properties.While some progress has been ma
【机 构】
:
College of Chemistry and Chemical Engineering,Shanxi Key Laboratory of Gas Energy Efficient and Clea
论文部分内容阅读
The removal of trace propyne (C3H4) from propyne/propylene (C3H4/C3H6) mixtures is a technical and challenging task during the production of polymer-grade propylene in view of their very similar size and physical properties.While some progress has been made,it is still very challenging to use some highly stable and commercially available porous materials via an energy-efficient adsorptive separation process.Herein,we report the ultrafine tuning of the pore apertures in type-A zeolites for the highly effi-cient removal of trace amounts of C3H4 from C3H4/C3H6 mixtures.The resulting ion-exchanged zeolite 5A exhibits a large C3H4 adsorption capacity (2.3 mmol g-1 under 10-4 MPa) and high C3H4/C3H6 selectivity at room temperature,which were mainly attributed to the ultrafine-tuned pore size that selectively blocks C3H6 molecules,while maintaining the strong adsorption of C3H4 at low pressure region.High pur-ity of C3H6 (>99.9999%) can be directly obtained on this material under ambient conditions,as demon-strated by the experimental breakthrough curves obtained for both 1/99 and 0.1/99.9 (V/V) C3H4/C3H6 mixtures.
其他文献
Steam pretreatment was employed to disrupt microalgal cells for lipids extraction.Effects of steam pre-treatment on microstructure of microalgal cells were investigated through scanning electron microscopy(SEM) and transmission electron microscopy (TEM).E
In the chemical looping with oxygen uncoupling (CLOU) process,CuO is a promising material due to the high oxygen carrier capacity and exothermic reaction in fuel reactor but limited by the low melting point.The combustion rate of carbon is faster than the
Under high-temperature batch fluidized bed conditions and by employing Juye coal as the raw material,the present study determined the effects of the bed material,temperature,OC/C ratio,steam flow and oxygen carrier cycle on the chemical looping combustion
Carbon nanotubes (CNTs) have been far and wide employed as the counter electrodes (CEs) in dye-sensitized solar cells because of their individual physical and chemical properties.However,the tech-niques available now,such as chemical vapor deposition,arc
Treatments of atherogenesis,one of the most common cardiovascular diseases (CVD),are continuously being made thanks to innovation and an increasingly in-depth knowledge of percutaneous transluminal coronary angioplasty (PTCA),the most revolutionary medica
The Ni-ultrahigh cathode material is one of the best choices for further increasing energy-density of lithium-ion batteries (LIBs),but they generally suffer from the poor structure stability and rapid capacity fade.Herein,the tungsten and phosphate polyan
Lithium metal batteries (LMBs) are highly considered as promising candidates for next-generation energy storage systems.However,routine electrolytes cannot tolerate the high potential at cathodes and low potential at anodes simultaneously,leading to sever
Rhizopus oryzae lipase (ROL) was immobilized on the surface of silica coated amino modified CoFe2O4 nanoparticles and applied for biodiesel production.The results indicated more affinity of the ROL toward its substrate upon immobilization,as revealed by a
Lithium (Li) metal anodes promise an ultrahigh theoretical energy density and low redox potential,thus being the critical energy material for next-generation batteries.Unfortunately,the formation of Li den-drites in Li metal anodes remarkably hinders the
Quinones have been widely studied as a potential catholyte in water-based redox flow batteries (RFBs)due to their ability to carry both electrons and protons in aqueous solutions.The wide variety ofquinones and derivatives offers exciting opportunities to