论文部分内容阅读
针对降水量这样一种非线性、非平稳序列,研究经验模态分解方法(EMD )和信息扩散近似推理方法(IDAR )在年降水量预测中的组合应用,解决资料序列不充分情况下的区域降水量预测问题。首先,通过EMD方法对具有典型非线性与非平稳特征的年降水量时间序列进行处理,分解出包含原信号不同特征尺度的分量数据系列;然后应用信息扩散近似推理技术对各降水量分量间的复杂非线性关系进行描述,建立当前趋势以及相邻年份之间的预测规则,并进行预测。以文献案例灌区长系列降水资料为样本进行实例计算,并与其它预测方法进行了对比。结果表明:基