论文部分内容阅读
针对移动网络中用户移动性原始数据所呈现的群聚特征,提出一种周期性集聚-发散的动力学过程仿真模型。该模型基于用户行为的无标度特性演化机理,采用数据挖掘的分析方法,利用基本网元之间由社会联系产生的相互作用进行模型演变,证明了网络度分布及度相关性等测度能够反映出移动网络的组织形式。在此基础上,再通过实测数据验证集聚链模型的真实性,并为下一代移动通信网络部署提供理论指导。
Aiming at the clustering characteristics presented by original mobility data of mobile users in mobile networks, a periodic convergence-divergence dynamic process simulation model is proposed. Based on the evolutionary mechanism of scale-free property of user behavior, this model uses the data mining analysis method to make use of the interaction between basic network elements and social connections to evolve the model. It proves that the network degree distribution and the degree of correlation can reflect Out of mobile network organization. On this basis, the authenticity of the chain model is validated by the measured data and provides theoretical guidance for the next generation of mobile communication network deployment.