Decomposition of Mongolian pine litter in the presence of understory species in semi-arid northeast

来源 :Journal of Forestry Research | 被引量 : 0次 | 上传用户:shoretxm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The effects of understory plant litter on dominant tree litter decomposition are not well documented especially in semi-arid forests. In this study, we used a microcosm experiment to examine the effects of two understory species(Artemisia scoparia and Setaria viridis)litter on the mass loss and N release of Mongolian pine(Pinus sylvestris var. mongolica) litter in Keerqin Sandy Lands, northeast China, and identified the influencing mechanism from the chemical quality of decomposing litter. Four litter combinations were set up: one monoculture of Mongolian pine and three mixtures of Mongolian pine and one or two understory species in equal mass proportions of each species. Total C, total N, lignin, cellulose and polyphenol concentrations, and mass loss of pine litter were analyzed at days 84 and 182 of incubation.The chemistry of pine litter not only changed with the stages of decomposition, but was also strongly influenced by the presence of understory species during decomposition. Both understory species promoted mass loss of pine litter at 84 days, while only the simultaneous presence of two understory species promoted mass loss of pine litter at182 days. Mass loss of pine litter was negatively correlated with initial ratios of C/N, lignin/N and polyphenol/N of litter combinations during the entire incubation period; at 182 days it was negatively correlated with polyphenol concentration and ratios of C/N and polyphenol/N of litter combinations at84 days of incubation. Nitrogen release of pine litter was promoted in the presence of understory species. Nitrogen release at 84 days was negatively correlated with initial N concentration; at 182 days it was negatively correlated with initial polyphenol concentration of litter combinations and positively correlated with lignin concentration of litter combinations at 84 days of incubation. Our results suggest that the presence of understory species causes substantial changes in chemical components of pine litter that can exert strong influences on subsequent decomposition of pine litter. The effects of understory plant litter on dominant tree litter decomposition are not well documented especially semi-arid forests. In this study, we used a microcosm experiment to examine the effects of two understory species (Artemisia scoparia and Setaria viridis) litter on the mass loss and N release of Mongolian pine (Pinus sylvestris var. mongolica) litter in Keerqin Sandy Lands, northeast China, and identified the influencing mechanism from the chemical quality of decomposing litter. Four litter combinations were set up: one monoculture of Mongolian pine and three mixtures of Mongolian pine and one or two understory species in equal mass proportions of each species. Total C, total N, lignin, cellulose and polyphenol concentrations, and mass loss of pine litter were analyzed at days 84 and 182 of incubation. The chemistry of pine litter not only changed with the stages of decomposition, but also was strongly influenced by the presence of understory species during decomposition. Bot h understory species promoted mass loss of pine litter at 84 days, while only the simultaneous presence of two understory species promoted mass loss of pine litter at 182 days. Mass loss of pine litter was negatively correlated with initial ratios of C / N, lignin / N and polyphenol / N of litter combinations during the entire incubation period; at 182 days it was negatively correlated with polyphenol concentration and ratios of C / N and polyphenol / N of litter combinations at 84 days of incubation. Nitrogen release of pine litter was promoted in the Presence of understory species. Nitrogen release at 84 days was negatively correlated with initial N concentration; at 182 days it was negatively correlated with initial polyphenol concentration of litter combinations and positively correlated with lignin concentration of litter combinations at 84 days of incubation. Our results suggest that the presence of understory species causes substantial changes in chemical components of pine litter that canexert strong influences on subsequent decomposition of pine litter.
其他文献
本刊讯世界领先的林纸集团斯道拉恩索2012年3月21日宣布,将在中国广西北海投资建设世界级浆纸一体化工厂,旨在与公司广西人工林基地形成“林浆纸一体化”产业链,实现可持续发
创建十七年的“中华纸业网(www.cppi.cn)”即将完成第三次改版,2016年8月8日已上线,进入试运行,敬请关注!新的“中华纸业网”注重行业资讯、数据应用、线上办公以及企业宣传
期刊
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
中国经济时报2012-4-23报道:“与一些行业一样,造纸业也需要规模经济,但是现阶段造纸行业的集中程度还不够,还需要出现造纸行业的大型企业,这不仅符合产业升级的需要,更是完
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
通过对松溉古镇文化的物质构成要素与非物质构成要素的解析,展示以松溉古镇为代表的巴蜀古镇文化遗产的普遍特点,分析古镇在现代生产方式和经济关系变革中的发展困境,以期引起人
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥