论文部分内容阅读
近读贵刊89年第9期“两种近似评定平面度误差方法的比较”(以下简称“比较”)一文,有些不同看法。本文借鉴参考文献总结了一套方法,在此抛砖引玉,以期得到同行的指教。最小二乘法是建立在剩余误差平方和为最小的原理基础上的。对“比较”一文中所附的表中数据,不敢苟同。本文方法是先将被测平面的各测量点x_i、y_i、z_i(i=1,2,……n)回归为一平面。然后利用点到平面的距离公式:d=(Ax_0+By_0+Cz_0+D)/(A~2+B~2+C~2)~(1/2),求出各点距此回归平面的距离。尔后使其旋转到符
Recently read your issue No. 89 in 1989, “two approximate assessment of flatness error comparison method” (hereinafter referred to as “comparison”) a somewhat different view. This article draws a reference to summarize a set of methods, throws in here, in order to get the advice of peers. The least squares method is based on the principle that the square sum of the residual error is minimum. I disagreed with the data in the table attached to the “comparison.” In this paper, we first return the measuring points x_i, y_i, z_i (i = 1, 2, ... n) of the measured plane to a plane. Then we use the point-to-plane distance formula: d = (Ax_0 + By_0 + Cz_0 + D) / (A ~ 2 + B ~ 2 + C ~ 2) distance. Then rotate it to symbol