论文部分内容阅读
本文对四种多变量校准方法--经典最小二乘法(CLS),偏最小二乘法(PLS),卡尔曼滤波法(KFM)以及人工神经网络法(ANN)--在多组分浓度分析方面的性能进行了比较。选择五种红外谱图严重混叠的大气有机毒物--1,3-丁二烯,苯,邻二甲苯,氯苯和丙烯醛--作为分析对象。分别计算各种方法对该5组分体系的平均预测误差MPE和平均相对误差MRE进行比较。结果表明,偏最小二乘法在处理这类问题中是最稳健的方法。