论文部分内容阅读
城市电网核心区负荷变化复杂,影响因素众多,对电网调度部门的安全运行提出了挑战。基于南京电网实际负荷数据,分析了负荷变化特性及各类影响负荷变化的因素,同时针对预测方法中存在的边缘效应等问题,通过改进训练策略。提出了一种新的人工神经网络短期负荷预测模型。该模型采用多隐含层和动态神经元个数的预测方法,对不同神经元预测结果进行比较,以达到预测负荷的目的。预测结果表明,基于该方法建立的预测模型适用性强且能获得较高的预测精度。可为城市核心区的短期负荷预测提供可行方案。