论文部分内容阅读
低温物理的範圍大致可以說是包括所有在液態空氣温度(約81°K)以下所發生的物理現象。早期的低温工作大部分是與氣體(氮、氧、氢、氦筹)以及它們的液態、固態的性質有關。到本世纪初,氦被液化,因而達到我們所称的極低温度领域(約10°K以下)。接着就發现了我們到今天还不能解释的金屬及合金的超導電性。在三十年代,把量子力學應用來解釋固态物体性質所获得的初步成功對於固體物理研究有很大的刺激作用,因而也大大推動了低温物理研究。超導电性與在1938年所發現的液態氦的超流動性的機構顯然是與大量粒子的
The range of low-temperature physics can broadly be said to include all the physical phenomena that occur below the liquid air temperature (about 81 ° K). Much of the early low-temperature work was related to the gas (nitrogen, oxygen, hydrogen, helium) and their liquid and solid nature. By the turn of the century, helium was liquefied, thus reaching what we call the very low temperature range (below about 10 ° K). Then we discovered the superconductivity of metals and alloys that we still can not explain today. In the 1930s, the initial success of the application of quantum mechanics to explain the properties of solid objects greatly stimulated the study of solid state physics, which greatly accelerated the study of cryogenic physics. The superconductivity and the mechanism of the super-fluidity of the liquid helium found in 1938 are clearly related to the large number of particles