论文部分内容阅读
随着图像数据量的增加,传统单核处理器或多处理器结构的计算方式已无法满足图像灰度化实时处理需求.该文利用图像处理器(GPU)在异构并行计算的优势,提出了基于开放式计算语言(OpenCL)的图像灰度化并行算法.通过分析加权平均图像灰度化数据处理的并行性,对任务进行了层次化分解,设计了2级并行的并行算法并映射到"CPU+GPU"异构计算平台上.实验结果显示:图像灰度化并行算法在OpenCL架构下NVIDIA GPU计算平台上相比串行算法、多核CPU并行算法和CUDA并行算法的性能分别获得了27.04倍、4