【摘 要】
:
针对集群负载动态变化引发容器频繁迁移的问题,提出了一种基于资源预留的容器部署方法。首先,设计了基于马尔可夫链模型的单容器资源需求动态变化描述机制,用于刻画单容器的资源需求情况;其次,基于单容器马尔可夫链模型分析了多容器资源动态变化情况,以刻画容器资源需求态势;随后,基于多容器马尔可夫链提出了面向动态负载的容器部署与资源预留算法;最后,基于容器资源需求特征的分析对所提算法的性能进行了优化。基于国产软
【机 构】
:
江苏方天电力技术有限公司,南京大学计算机科学与技术系,南京航空航天大学计算机科学与技术学院
【基金项目】
:
国家自然科学基金资助项目(61802182)。
论文部分内容阅读
针对集群负载动态变化引发容器频繁迁移的问题,提出了一种基于资源预留的容器部署方法。首先,设计了基于马尔可夫链模型的单容器资源需求动态变化描述机制,用于刻画单容器的资源需求情况;其次,基于单容器马尔可夫链模型分析了多容器资源动态变化情况,以刻画容器资源需求态势;随后,基于多容器马尔可夫链提出了面向动态负载的容器部署与资源预留算法;最后,基于容器资源需求特征的分析对所提算法的性能进行了优化。基于国产软硬件环境构建了仿真实验环境,仿真结果表明,在资源冲突率方面,所提方法的性能接近最优的峰值配置策略RP,但
其他文献
随着信息技术的不断发展,各种SQL注入攻击工具层出不穷,攻击类型多变万化,SQL注入问题一直是网络安全的主要问题。因此,针对SQL注入攻击提出一种基于N-Gram和TFIDF(term frequency inverse document frequency)的入侵检测方法。其核心思想是:首先在预处理阶段使用N-Gram技术选取特征词,再利用TFIDF技术进行SQL语句文本向量化处理,然后在此数据集基础上训练SVM分类器,最后通过与现有研究进行对比来检测分类效果。实验结果表明,与直接使用预先定义好的特征向
针对我国现有信贷风险评估体系的不完善以及银行对中小企业的信用等级评估的要求,提出了一种基于Ada⁃Boost-BOA的中小企业信用评估模型。首先确定中小企业信用评估指标,然后通过贝叶斯优化算法构建AdaBoost-BOA集成分类信用评估模型。实验结果表明,与其他传统的模型相比较,论文提出的AdaBoost-BOA模型在信用等级评估中具有更优良的评估性能,其准确率更高。
现有无线联邦学习框架缺乏对实际的分布式高速车联网(IoV)场景的有效支持。针对该场景下的分布式学习问题,提出了一种基于随机网络拓扑模型的分布式训练算法——分簇式无线联邦学习算法(C-WFLA)。首先,该算法基于高速公路场景下的车辆分布情况设计网络模型;其次,该算法考虑了用户端进行上行数据传输时的路径衰落、瑞利衰落等因素;最后,该算法设计了基于分簇式训练的无线联邦学习方法。利用所提算法对手写体识别模
由于光照、尺寸形变等因素,在自然条件下实时准确地检测和识别多尺度交通标志一直具有挑战性。针对该问题,论文提出一个面向多尺度交通标志的快速识别算法。首先,论文采用了一种基于多通道融合的输入方式,解决原始图像直接输入导致局部边缘刻画不明显的问题;同时,论文研究了一种注意力机制与多尺度特征相结合的交通标志检测算法。通过FPN网络获取多尺度特征图,同时在每个尺度的特征图中通过RPN网络定位出候选目标区域,
为提升短视频内容分发的精度,分析用户所属社交群体的兴趣倾向和对短视频内容的个性化需求,在基于主动推荐方式的短视频应用场景中,以视频内容提供商利润最大化为优化目标,设计了一种短视频内容分发策略。首先,基于联邦学习,利用用户群本地相册数据训练兴趣预测模型,提出用户群兴趣向量预测算法并得到用户群的兴趣向量表示;然后,以用户群的兴趣向量作为输入,基于组合置信上界(CUCB)算法实时设计相应的短视频内容分发
针对普适交通模式的场景感知功耗高、场景复杂的问题,提出一种融合残差网络(Res Net)和带孔卷积的交通模式识别算法。首先,使用快速傅里叶变换(FFT)将一维传感器数据转换为二维频谱图像;然后,使用主成分分析(PCA)算法对频谱图像降采样;最后,使用Res Net挖掘交通模式的局部特征,使用带孔卷积挖掘交通模式的全局特征,从而实现对八种交通模式进行识别。与决策树、随机森林、Alex Net等八种算
作为模型压缩的一个分支,网络剪枝算法通过移除深度神经网络中不重要的参数来降低计算消耗;然而,永久性的剪枝会导致模型容量不可逆转的损失。针对该问题,提出了一种联合动态剪枝的算法来综合分析卷积核与输入图像的特征。一方面,将部分卷积核置零,并允许其在训练过程中更新,直到网络收敛之后再永久性移除被置零的卷积核。另一方面,采样输入图像的特征,然后利用通道重要性预测网络对这些特征进行分析,从而确定卷积运算中可
针对多步交通流量预测任务中时间空间特征提取效果不佳和预测未来时间交通流量精度低的问题,提出一种基于长短时记忆(LSTM)网络、卷积残差网络和注意力机制的融合模型。首先,利用一种基于编解码器的架构,通过在编解码器中加入LSTM网络来挖掘不同尺度的时间域特征;其次,构建基于注意力机制挤压激励(SE)模块的卷积残差网络嵌入到LSTM网络结构中,从而挖掘交通流量数据中的空间域特征;最后,将编码器中获得的隐
针对在受到部分遮挡或角度过大无法定位面部关键特征点的情况下,传统的头部姿态估计方法的准确率低或无法进行头部姿态估计的问题,提出了优化Le Net-5网络的多角度头部姿态估计方法。首先,通过对卷积神经网络(CNN)的深度、卷积核大小等进行优化来更好地捕捉图像的全局特征;然后,改进池化层,用卷积操作代替池化操作来增强网络的非线性能力;最后,引入Ada Bound优化器,并利用Softmax回归模型做姿
交通模式识别是用户行为识别中的一个重要分支,其目的是对用户所处的交通模式进行准确判断。针对现代智慧城市交通系统对在移动设备环境下精准感知用户交通模式的需求,提出了一种基于残差时域注意力神经网络的交通模式识别算法。首先,通过具有较强局部特征提取能力的残差网络提取传感器时序中的局部特征;然后,采用基于通道的注意力机制对不同传感器特征进行重校准,并针对不同传感器的数据异构性进行注意力重校准;最后,利用具