论文部分内容阅读
为提高支持向量回归(SVR)模型的预测能力,将核心向量回归(Core vector regression,CVR)方法引入到数控机床热误差建模中,并采用偏最小二乘(Partial least squares,PLS)算法从输入样本提取主成分,构建特征集,然后使用改进的粒子群优化(Improved particle swam optimization,IPSO)算法对CVR的模型参数进行寻优,从而提出一种基于PLS—IPSO—CVR的数控机床热误差建模方法。仿真实验表明,所提出的建模方法在预测精度和速度方面