论文部分内容阅读
利用桶排序思想设计了一个求解U/C的算法,其时间复杂度降为O(∣C∣∣U∣).由此,给出一种无需求解正域便能判断正域是否变化的方法.基于以上方法,提出一种快速属性约简算法.该算法的求解策略是在每次迭代过程中求解决策表相对核,如果在某次迭代过程中找不到这样的核属性,则任意排除一个条件属性.最后通过实验分析了该算法在最坏情况下的时间复杂性,其复杂性降为O(∣C∣2∣U/C∣).
An algorithm to solve U / C is designed by using bucket sorting theory, whose time complexity is reduced to O (|C||U||) .Thus, a method to judge whether the positive domain changes without solving the positive domain is given Based on the above method, a fast attribute reduction algorithm is proposed, which solves the relative core of the decision table in each iteration process, and if any such core attribute can not be found in a certain iteration, A condition attribute.At last, the complexity of the algorithm under the worst case condition is analyzed experimentally, and its complexity is reduced to O (||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||