论文部分内容阅读
在无线传感器网络(WSN)中,传统的处理方式是采用奈奎斯特技术对信号进行采样并重构,而随着信号频率的增加,应用奈奎斯特技术会使成本急剧增加,这是人们所不乐见的。针对这一问题,近年来出现一种新的技术即压缩感知技术,它能利用更少的数据和合适的重构方法得到更精确的原始信号。将稀疏贝叶斯学习(SBL)和压缩感知联合起来,形成了一种在噪声的情况下更好重建可压缩信号的方法,并进一步将这种方法应用在WSN中,可以在误差允许的范围内有效控制测量数据的维数,所以在保证了一定的误差的同时还减少了成本,提高了算法的效率。