【摘 要】
:
近几年,深度学习在生物医学图像处理中的应用得到了广泛关注。从深度学习的基本理论和医学领域应用出发,提出了一种改进的三维双路径脑肿瘤图像分割网络,用于提高核磁共振成像序列中对脑肿瘤各个区域的检测精度。所提算法以3D-UNet为基础架构,首先,使用改进的双路径网络单元构成类似于UNet的编码-解码器结构,该网络单元在保留原有特征的同时,还可以在脑肿瘤的纹理、形状和边缘等方面产生新特征,来提高网络分割精
【机 构】
:
天津大学微电子学院,天津300072
论文部分内容阅读
近几年,深度学习在生物医学图像处理中的应用得到了广泛关注。从深度学习的基本理论和医学领域应用出发,提出了一种改进的三维双路径脑肿瘤图像分割网络,用于提高核磁共振成像序列中对脑肿瘤各个区域的检测精度。所提算法以3D-UNet为基础架构,首先,使用改进的双路径网络单元构成类似于UNet的编码-解码器结构,该网络单元在保留原有特征的同时,还可以在脑肿瘤的纹理、形状和边缘等方面产生新特征,来提高网络分割精度;其次,在双路径网络模块中加入多纤结构,在保证分割精度的同时减少了参数量;最后,在每个网络模块中的组卷
其他文献
人工智能的发展已经给人类社会的发展带来了极大变革,各种基于人工智能的新应用层出不穷.电磁和光学超材料对电磁波有强大的调控能力,且具有灵活的设计特性,尤其是可编程超材
为了解决训练样本有限情况下高光谱图像分类精度低的问题,提出了一种结合扩张卷积与注意力机制的三维-二维串联卷积神经网络模型。首先,该模型以串联的三维-二维卷积神经网络作为基础结构,利用三维卷积同时提取高光谱图像的空谱特征,并采用二维卷积进一步提取高级空间语义信息;然后,通过引入扩张卷积增大卷积核感受野,构建了多尺度特征提取结构,实现了多尺度特征的融合;最后,利用注意力机制使网络关注重要的空谱特征,并
超材料作为一种突破性的人工设计材料,在电磁波调控领域起到了革命性的作用.变换光学与超材料的结合不仅可以充分发挥超材料的奇妙特性,实现许多神奇的效应,还可以用作光学模
随着我国教育事业的不断发展与不断创新,对我国小学阶段的教学目标与教学方式也提出了新的要求.小学教学是教育事业的基础,因此提出一种新型教学模式——体验教学法.本文将对
目前STEM教育是一种崭新的教育模式,可以使数学课堂变得非常有趣.转化是一种思想,更是一种策略.STEM教育理念下的数学探究活动挣脱了传统教学模式的桎梏,它认为学习的乐趣不
笔者开设一节《集合的概念》的公开课,在强化关键能力、落实发展数学核心素养方面做了一些尝试和探索,现结合这节课谈谈个人的认识和体会.
初中数学课堂教学过程中,教师尝试运用情境教学法,有效促进学生在数学情境中理解数学知识、掌握数学知识、运用数学知识.本文通过对基于数学内容创设生活情境、基于意识培养
作为一类具有代表性的光学共振模式,光学束缚态已被用于大幅增大古斯-汉欣位移.然而,在大多数的研究工作中,人们利用的是透射型的束缚态来增大古斯-汉欣位移.因此,古斯-汉欣
对基于微锥的侧抛光纤马赫-曾德尔干涉仪(MZI)结构进行了理论和实验研究。与传统没有经过侧边抛磨的光纤MZI相比,可以看出控制光纤侧抛深度可以有效地提高MZI结构的折射率传感性能。研究结果表明:侧抛深度达41.7μm时,折射率在1.34附近的传感灵敏度达-117.145 nm/RIU。利用侧抛光纤MZI结构结合亲水性材料氧化石墨烯(GO),通过将其沉积在侧抛光纤MZI表面,实现了对温度和湿度双参量
激光因相干性好、方向性好、单色性好等优点得到了广泛的应用,但是,激光的高相干性会带来严重的散斑现象,导致其在显示和成像领域的应用受到限制.通过对激光腔的几何形状和激