论文部分内容阅读
长期以来,人们认为表示问题是机器学习领域的瓶颈问题之一.机器学习方法的性能在很大程度上依赖于数据表示的选择.数据表示领域的主要问题是如何更好地学习到有意义和有用的数据表示.宽泛来看数据表示领域有深度学习、特征学习、度量学习、成分建模、结构化预测和强化学习等.这些技术应用的范围也非常广泛,包括图像、语音识别和文字理解等.因此,研究机器学习表示方法是一件长期且具有探索意义的工作.基于此,利用范畴理论来研究机器学习方法的表示,提出了范畴表示机器学习方法的基本概念.对决策树、支持向量机、深度神经网络等方法进行研究