论文部分内容阅读
以合肥市内道路、公园和单位附属绿地的广玉兰为对象,据外业调查数据,选择Richards,logistic,Gompertz,Weibul和S曲线5种生长方程,研究广玉兰胸径、树高、冠幅与年龄的相关关系,并对拟合效果进行对比分析,建立生长模型。道路上广玉兰的胸径生长模型为Y=4 807.694 25/((1+6 222.541 45×exp(0.060 55X))^(1/1.357 46)),树高生长模型为Y=11 162.752 7/((1+18 677.171 3×exp(-0.049 999X))^(1/1.199 5)),冠幅生长模型为Y=18.316 3×(1-exp(-((X-3.190 7)/183.413 8)^0.468 129));公园和附属绿地内广玉兰的胸径生长模型为Y=64.832 8/((1-0.447 484×exp(-0.056 236X))^(1/-0.124 092)),树高生长模型为Y=18.972 1/((1+0.128 150×exp(-0.095 568X))^(1/0.024 720)),冠幅生长模型为Y=812.463 8×(1-exp(-((X+9.152 7)/593.934 1)^1.678 9))。
Based on the field survey data, five growth equations of Richards, logistic, Gompertz, Weibul and S curves were selected for Magnolia grandiflora in roads, parks and affiliated green spaces in Hefei. Age, and the comparative analysis of the fitting effect to establish a growth model. The diameter growth model of Magnolia grandiflora on the road was Y = 4 807.694 25 / ((1 + 6 222.541 45 × exp (0.060 55X)) ^ (1 / 1.357 46)), the height growth model was Y = 11 162.752 7 / ( (1 + 18 677.171 3 × exp (-0.049 999X)) ^ (1 / 1.199 5)), and the crown growth model was Y = 18.316 3 × (1 -exp (- ((X-3.190 7) /183.4138) ^ 0.468 129)). The DBH growth model of Magnolia grandis in the park and its affiliated greenbelt was Y = 64.832 8 / (1-0.447 484 × exp (-0.056 236X)) ^ (1 / -0.124 092) The model was Y = 18.972 1 / (1 + 0.128 150 × exp (-0.095 568X)) ^ (1 / 0.024 720)). The crown growth model was Y = 812.463 8 × (1-exp 9.152 7) /593.934 1) ^ 1.678 9)).