【摘 要】
:
针对室内场所,运用目标检测等算法实现对监控视频的实时异常检测.为提高检测效果,对YOLO v2模型进行了三个方面的改进:利用稠密网络中特征融合方式改进网络结构;使用K-means++对目标框进行聚类改进网络参数;利用迁移学习的方式对网络进行训练;改进最终得到Dense_YOLO目标检测模型.实验结果表明Dense_YOLO正确率达到了93.66%,相比YOLO v2提高了7.06%.针对人、宠物、
【基金项目】
:
辽宁省自然科学基金资助项目(201602118),辽宁省教育厅科学研究计划资助项目(JDL2016024).