论文部分内容阅读
给出一种RBF神经网络与粒子群算法相结合的电容层析成像(ECT)传感器结构参数优化方法。该方法以敏感场整体灵敏度大小等系统性能为优化目标,基于管壁厚度、屏蔽层厚度、径向屏蔽插入管壁深度、径向电极宽度、电极宽度(中心夹角)、管壁材料的相对介电常数、屏蔽层填充物相对介电常数7种重要的结构参数进行试验。应用RBF神经网络对多组结构参数以及对应的系统性能指标进行学习,得到回归模型,并应用粒子群算法进行寻优。结果显示,该方法参数寻优范围大,局限性小,寻优过程收敛快。优化后的系统整体灵敏度增大,成像质量改进。