论文部分内容阅读
使用常规的Wiener反褶积必须假设震源子波在地层旅行过程中是平稳的即一成不变的,这个前提条件与实际野外地震资料采集差别较大,而基于Gabor变换反褶积技术考虑到地震能量的衰减、子波的形变等非平稳性特征.地震道在Gabor域可因式分解成三项即震源子波、衰减函数和反射系数,该技术设计POU窗函数,并利用此函数在Gabor域对地震信号进行局部时频分解.Gabor域反褶积算法在Gabor域通过除以衰减函数和震源子波的乘积来估算地层反射系数,然后再做Gabor反变换可求得时间域的地层反射系数.理论模型的测试和实际地震资料的应用均表明,与Wiener反褶积相比较,基于Gabor变换反褶积可补偿中深层的能量衰减并因此拓宽有效频带和提高时间分辨率.
Using the conventional Wiener deconvolution, it is necessary to assume that the source wavelet is stable and immutable during the stratigraphic travel. This precondition differs greatly from the actual field seismic data acquisition. However, the Gabor transform deconvolution technique takes into account the seismic energy Attenuation, wavelet deformation and other non-stationary characteristics.Seismic traces in the Gabor domain can be factorized into three sources wavelet, attenuation function and reflection coefficient, the design of POU window function, and the use of this function in the Gabor domain pair Seismic signal for local time-frequency decomposition.Gabor domain deconvolution algorithm in Gabor domain by dividing the attenuation function and the source wavelet to estimate the formation reflection coefficient, and then Gabor inverse transform can be obtained in the time domain of the formation of the reflection coefficient. Both theoretical model tests and practical seismic data show that Gabor transform deconvolution can compensate for energy attenuation in the middle and deep layers and thus broaden the effective frequency band and improve the temporal resolution compared with Wiener deconvolution.