论文部分内容阅读
目的:探讨生物强度电场对人皮肤成纤维细胞(HSF)转化的调节作用。方法:采用实验研究方法。取HSF,分为经200 mV/mm电场处理6 h的200 mV/mm电场组和置于电场装置中不通电处理6 h的模拟电场组,在活细胞工作站中观察细胞形态和排列变化;记录处理0、6 h细胞数,并计算细胞数变化率;观察并计算3 h内细胞运动方向、位移速度、轨迹速度(以上实验模拟电场组样本数为34、200 mV/mm电场组样本数为30);采用免疫荧光法检测处理3 h细胞α平滑肌肌动蛋白(α-SMA)的蛋白表达(样本数为3)。取HSF分为置于电场装置中不通电处理3 h的模拟电场组和经相应强度电场处理3 h的100 mV/mm电场组、200 mV/mm电场组、400 mV/mm电场组,另取HSF分为置于电场装置中不通电处理6 h的模拟电场组和经200 mV/mm电场处理相应时间的电场处理1 h组、电场处理3 h组、电场处理6 h组,采用蛋白质印迹法检测α-SMA、增殖细胞核抗原(PCNA)的蛋白表达(样本数为3)。对数据行Mann-Whitney n U检验、单因素方差分析、独立样本n t检验及LSD检验。n 结果:处理6 h,与模拟电场组相比,200 mV/mm电场组细胞形态拉长,并产生局部粘连;模拟电场组细胞任意排列,200 mV/mm电场组细胞呈有规律的纵向排列;2组细胞数变化率相近(n P>0.05)。处理3 h内,200 mV/mm电场组细胞有明显的向正极运动趋势,模拟电场组细胞绕原点运动;与模拟电场组比较,200 mV/mm电场组细胞位移速度和轨迹速度均明显加快(n Z值分别为-5.33、-5.41,n P<0.01),方向性显著增强(n Z=-4.39,n P<0.01)。处理3 h,200 mV/mm电场组细胞α-SMA蛋白表达较模拟电场组明显增加(n t=-9.81,n P<0.01)。处理3 h,100 mV/mm电场组、200 mV/mm电场组、400 mV/mm电场组细胞α-SMA蛋白表达分别为1.195±0.057、1.606±0.041、1.616±0.039,均明显多于模拟电场组的0.649±0.028(n P<0.01)。与100 mV/mm电场组比较,200 mV/mm电场组、400 mV/mm电场组细胞α-SMA蛋白表达均明显增加(n P<0.01)。电场处理1 h组、电场处理3 h组、电场处理6 h组细胞α-SMA蛋白表达分别为0.730±0.032、1.561±0.031、1.553±0.045,均明显多于模拟电场组的0.464±0.020(n P<0.01);与电场处理1 h组比较,电场处理3 h组、电场处理6 h组细胞α-SMA蛋白表达均明显增加(n P<0.01)。处理3 h,与模拟电场组比较,100 mV/mm电场组、200 mV/mm电场组、400 mV/mm电场组细胞PCNA蛋白表达均明显减少(n P<0.05或n P<0.01);与100 mV/mm电场组比较,200 mV/mm电场组、400 mV/mm电场组细胞PCNA蛋白表达均明显减少(n P<0.05或n P<0.01);与200 mV/mm电场组比较,400 mV/mm电场组细胞PCNA蛋白表达明显减少(n P<0.01)。与模拟电场组比较,电场处理1 h组、电场处理3 h组、电场处理6 h组细胞PCNA蛋白表达均明显减少(n P<0.01);与电场处理1 h组比较,电场处理3 h组、电场处理6 h组细胞PCNA蛋白表达均明显减少(n P<0.05或n P<0.01);与电场处理3 h组比较,电场处理6 h组细胞PCNA蛋白表达明显减少(n P0.05). Within 3 h of treatment, the cells in 200 mV/mm electric field group had an obvious tendency to move toward the positive electrode, and the cells in simulated electric field group moved around the origin; compared with those in simulated electric field group, the movement velocity and trajectory velocity of the cells in 200 mV/mm electric field group were increased significantly (withn Z values of -5.33 and -5.41, respectively, n P<0.01), and the directionality was significantly enhanced (n Z=-4.39,n P<0.01). After 3 h of treatment, the protein expression of α-SMA of cells in 200 mV/mm electric field group was significantly higher than that in simulated electric field group (n t=-9.81, n P<0.01). After 3 h of treatment, the protein expressions of α-SMA of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 400 mV/mm electric field group were 1.195±0.057, 1.606±0.041, and 1.616±0.039, respectively, which were significantly more than 0.649±0.028 in simulated electric field group (n P<0.01). Compared with that in 100 mV/mm electric field group, the protein expressions of α-SMA of cells in 200 mV/mm electric field group and 400 mV/mm electric field group were significantly increased (n P<0.01). The protein expressions of α-SMA of cells in electric field treatment 1 h group, electric field treatment 3 h group, and electric field treatment 6 h group were 0.730±0.032, 1.561±0.031, and 1.553±0.045, respectively, significantly more than 0.464±0.020 in simulated electric field group (n P<0.01). Compared with that in electric field treatment 1 h group, the protein expressions of α-SMA in electric field treatment 3 h group and electric field treatment 6 h group were significantly increasedn (P<0.01). After 3 h of treatment, compared with that in simulated electric field group, the protein expressions of PCNA of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 400 mV/mm electric field group were significantly decreased (n P<0.05 orn P<0.01); compared with that in 100 mV/mm electric field group, the protein expressions of PCNA of cells in 200 mV/mm electric field group and 400 mV/mm electric field group were significantly decreased (n P<0.05 orn P<0.01); compared with that in 200 mV/mm electric field group, the protein expression of PCNA of cells in 400 mV/mm electric field group was significantly decreased (n P<0.01). Compared with that in simulated electric field group, the protein expressions of PCNA of cells in electric field treatment 1 h group, electric field treatment 3 h group, and electric field treatment 6 h group were significantly decreased (n P<0.01); compared with that in electric field treatment 1 h group, the protein expressions of PCNA of cells in electric field treatment 3 h group and electric field treatment 6 h group were significantly decreased (n P<0.05 orn P<0.01); compared with that in electric field treatment 3 h group, the protein expression of PCNA of cells in electric field treatment 6 h group was significantly decreased (n P<0.01).n Conclusions:The bio-intensity electric field can induce the migration of HSFs and promote the transformation of fibroblasts to myofibroblasts, and the transformation displays certain dependence on the time and intensity of electric field.