论文部分内容阅读
基于奇异值分解和递推广义增广最小二乘原理,提出了Box—Jenkins模型参数估计的一种递推算法.常规的递推广义增广最小二乘算法对舍入误差较为敏感,会导致协方差矩阵失去正定性和对称性,产生病态条件问题,引起数值不稳定现象.为了改善参数估计的性能,利用协方差矩阵的奇异值分解技术,推导出Box—Jenkins模型估计算法.该算法辨识精度高,收敛速度快,数值稳定性好.仿真表明,随着噪信比的增大,新算法仍然具有良好的性能.