论文部分内容阅读
提出一种基于π补偿Smith预估器和算法改进型神经网络的电流跟踪控制方案。π补偿预估器的引入有效地补偿了系统控制中的延时,提高了系统的稳定性能和响应速度;算法改进型神经网络用于优化PI控制器的参数,以提高系统的补偿精度。同时,利用ITAE准则给出π补偿预估器参数与PI控制器参数间的数学关系式。通过算法改进型神经网络可以同时优化两个控制器的参数,避免了将PI控制器参数与预估器参数分开独立识别的局面,并降低了PI控制器和π补偿Smith预估器对电网参数的敏感依赖性。当电网负载发生变化时,能够利用改进的神经网络