论文部分内容阅读
个性化推荐系统是电子商务系统的一个重要研究内容,计算顾客之间的相似性或顾客聚类是产生良好推荐的关键.通过分析个性化推荐的应用特征,即顾客评分数据稀疏及其影响;在开放的电子商务环境中,新顾客不断加入和顾客偏好的迁移,使顾客簇不断发生变化,提出了一种基于自组织特征映射聚类的协同过滤推荐算法,对高维稀疏的样本进行动态聚类.它具有下列特点:①在自组织特征映射聚类中,引入抑制函数,使其能够适应顾客评分数据的稀疏性;②设置神经元的分裂和合并过程,使其能够满足顾客聚类的动态变化.通过实验分析,表明该算法能够适应顾客评分