论文部分内容阅读
基于关联分类的数据挖掘在医学临床上得到了广泛应用,但传统算法在进行医学挖掘时却出现选项集大小的制约、项的位置、关联规模过大等问题。针对传统关联分类算法在医学数据挖掘上的这些不足,提出了一种Apriori算法的优化,算法通过加入最大支持度及最小支持度和项出现位置的约束有效地在算法执行前和算法执行过程中删除了冗余模式和规则,满足医学分类要求,提高了医学分类的有效性,并且通过Apriori-gen函数的改进提高了算法运行效率。最后用仿真实验验证了上述优化措施。