论文部分内容阅读
多新息方法可以用于线性系统和非线性系统的自适应滤波、参数估计、自校正控制、自适应故障检测与诊断等.线性系统包括两种基本类型:方程误差类系统和输出误差类系统.本文将多新息辨识应用到方程误差滑动平均(EEMA)系统(即CARMA系统),研究多新息增广随机梯度算法和多新息增广最小二乘算法,应用到方程误差自回归滑动平均(EEARMA)系统(即CARARMA系统),提出基于分解的多新息广义增广随机梯度算法和基于分解的多新息广义增广最小二乘算法,以及基于滤波的多新息广义增广随机梯度算法和基于滤波的多新息广义增广最小二