论文部分内容阅读
Designing efficient estimation of distribution algorithms for optimizing complex continuous problems is still a challenging task. This paper utilizes histogram probabilistic model to describe the distribution of population and to generate promising solutions. The advantage of histogram model, its intrinsic multimodality, makes it proper to describe the solution distribution of complex and multimodal continuous problems. To make histogram model more efficiently explore and exploit the search space, several strategies are brought into the algorithms: the surrounding effect reduces the population size in estimating the model with a certain number of the bins and the shrinking strategy guarantees the accuracy of optimal solutions. Furthermore, this paper shows that histogram-based EDA (Estimation of distributiona lgorithm) can give comparable or even much better performance than those predominant EDAs based on Gaussianmodels.