基于CNN和改进的图搜索分割OCT图像中的视网膜层

来源 :激光与光电子学进展 | 被引量 : 2次 | 上传用户:mqzhen1987
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
提出一种结合卷积神经网络(CNN)和改进的图搜索来分割光学相干断层扫描成像(OCT)图像中的7个视网膜层边界的方法。首先利用CNN自动提取每个边界的特征并训练相应的分类器,由此将获得的每个边界的概率图作为分割的感兴趣区域;其次,提出一种改进的图搜索方法,该方法在垂直梯度的基础上添加了横向约束,当遇到血管阴影时,分割线可以横向穿过阴影。使用所提方法对正常图像进行分割,并对得到的结果和图搜索方法、基于CNN的方法得到的结果进行比较。实验结果表明,所提方法能精确分割7个视网膜层边界,平均层边界误差为(4.
其他文献
珍馐御膳,香彻瑶池宴。牙箸未投仙侣羡,嗅色垂涎赧赞。何今味诱羞肠,悔将供献匆忙。恼恐金猴误事,放多来日都尝。 Jane 馐 imperial meal, Charmacy Chi Pond Banquet. Teet
深度神经网络在静态图像领域已取得突破性进展,并逐步扩展到视频识别领域。人体动作识别是视频识别领域的研究热点和难点,因此,提出了一种基于双流快速区域卷积神经网络(Faster RCNN)改进的人体动作识别算法。首先,用RGB(Red,Green,Blue)图像和光流数据作为网络的输入,分别训练Faster RCNN;然后,将训练好后的网络模型进行融合,并引入改进的压缩和激励模块对特征通道进行处理,以