面向重大公共卫生风险治理的应急物流协同演化仿真

来源 :计算机应用 | 被引量 : 1次 | 上传用户:kongzathu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为提高重大公共卫生风险治理过程中的应急物流效率,在分析政府与物流企业行为特征的基础上,设计了面向重大公共卫生风险治理的高效应急物流协同机制。通过构建地方政府与物流企业的演化博弈模型,探究了地方政府监管和物流企业协同的演化规律与路径,然后利用数值仿真来验证所提模型的可行性和有效性。结果表明,与商业物流协同机制相比,面向重大公共卫生风险治理的应急物流协同机制更依赖于地方政府的监管力度,并且该机制使得物流企业的协同水平在0.25与0.9之间反复波动;而建立针对地方政府的动态奖惩机制后,在博弈次数达到30时
其他文献
线程级推测(TLS)技术可挖掘程序并行执行潜能,提高多核资源利用率,但目前TACLeBench的内核基准仍未在TLS并行化中得到有效分析。针对该问题设计了循环级推测执行的剖析方案和剖析工具。选取7个代表性的TACLeBench内核基准程序,首先对程序进行初始化分析,选取程序热点片段插入循环标识;其次对这些片段进行交叉编译,记录程序推测线程与内存地址相关数据,剖析其循环级最大潜在并行性;最后综合探讨
德目教育是个人发展的基石,也是学校的重要职责之一,而教材作为进行德目教育的重要载体,德目指标自然也就成为修订教材的重要标准之一。利用深度学习来实现教材德目指标的自动分类具有更高的效率和可靠性,但是教材文本数据集具有文本信息丰富、特征表现不明显、样本分布不均衡等特点,针对这些问题,结合一种新颖的数据增强方法,并根据词向量对分类结果的贡献度,通过注意力机制计算得到其注意力矩阵,然后结合词向量矩阵一同输入到模型中去,从而提出一种结合注意力机制的文本分类模型IoMET_A,利用IoMET_A对上海市中小学教材文本
针对能源互联网跨企业、跨部门的数据共享过程中存在的能源数据易篡改、泄密、数据所有权争议的问题,结合区块链可追溯、难以篡改等特点,提出一种基于区块链多链架构的能源数据访问控制方法,在保护用户隐私的同时实现了能源数据跨企业、跨部门的访问控制。该方法中采用监管链与多数据链相结合的方式保护了数据的隐私,提高了可扩展性;使用链上存储数据摘要、链下存储原始数据的方式缓解了区块链的存储压力;通过支持外包的多授权
为保证语音信号在通信传输中的安全性,提出一种基于级联混沌系统的分数域语音加密算法。首先,对语音信号进行分组;其次,利用混沌系统获取分数傅里叶变换的阶次,各组数据对应的阶次呈动态变化;然后,采用具有较低计算复杂度的采样型分数傅里叶离散变换得到各组对应的分数域谱数据;最后,利用级联混沌系统依次对各组分数域进行数据加密,从而实现语音信号的整体加密。实验结果表明,所提算法对密钥具有极大的敏感度,得到的加密
针对目前现代万维网(WWW)应用程序中跨站脚本(XSS)漏洞检测技术存在的效率低,以及漏报率、误报率高等问题,提出了一个基于模糊测试的反射型XSS漏洞检测系统。首先,通过网络爬虫技术爬取整站指定深度的网页链接并对其进行分析,从而提取出潜在的用户注入点;其次,根据攻击载荷的语法形式构造模糊测试用例,并为每个元素设置初始权重,依据注入探子向量来获取输出点类型,从而选择对应的攻击语法模式来构造较有潜力的
针对蝴蝶优化算法(BOA)容易陷入局部最优和收敛性差等问题,提出一种多策略改进的蝴蝶优化算法(MSBOA)。首先引入余弦相似度位置调整策略,通过旋转变化算子和伸缩变换算子进行位置更新,从而有效地保持BOA的种群多样性;其次引入动态切换概率,来平衡BOA局部阶段和全局阶段的转换;最后增加混合惯性权重策略,以提高BOA的收敛速度。使用16个基准测试函数、Wilcoxon检验以及部分CEC2014函数来
实体关系抽取是构建大规模知识图谱及各种信息抽取任务的关键步骤。基于预训练语言模型,提出基于头实体注意力的实体关系联合抽取方法。该方法采用卷积神经网络(CNN)提取头实体关键信息,并采用注意力机制捕获头实体与尾实体之间的依赖关系,构建了基于头实体注意力的联合抽取模型(JSA)。在公共数据集纽约时报语料库(NYT)和采用远程监督方法构建的人工智能领域数据集上进行实验,所提模型的F1值相较于级联二元标记
针对目前知识图谱查询中节点之间语义关联性不高、查询效率低等问题,提出了一种实体关联的查询方法,然后以此为基础设计并实现了基于知识图谱的企业查询系统。所提查询方法采用四层过滤模型,首先通过路径搜索找到目标节点的公共路径,从而过滤掉关联程度较低的查询节点,得到过滤集合;然后在中间两层分别对过滤集合的属性和关系计算关联度,再基于动态阈值完成图集过滤;最后综合实体关联度和关系关联度得分并排序得到最终的查询
针对一般特征选择算法未能揭示数据特征与数据类别之间的可解释性映射关系的问题,在基因表达式编程(GEP)的基础上,通过引入初始化方法、变异策略以及适应度评价方法,提出了一种改进的基于层次距离的GEP特征选择分类算法(FSLDGEP)。首先,利用定义的选择概率有导向地初始化种群个体,从而增加种群中有效个体的数量;其次,定义个体的层次邻域,使种群个体基于其层次邻域进行变异,并解决了变异过程中的盲目无导向
为了在不显著提升计算复杂度的情况下,有效提升通信系统的误码率(BER)性能,利用深度学习在数据处理方面的强大能力,提出一种面向基于蜂窝网络的车联网(C-V2X)通信的基于深度学习的联合信道估计与均衡算法——V-EstEqNet。与传统算法分两个阶段分别进行信道估计与均衡不同,V-EstEqNet将通信系统接收机中的信道估计与信道均衡进行联合考虑,并利用深度学习网络直接对接收数据进行校正和恢复,无须