论文部分内容阅读
针对制粉系统存在的大惯性和大迟延等特点,提出了一种基于时序-神经网络的一次风量软测量模型。在建模过程中,考虑了生产过程输入变量和输出变量的时序,给出了辅助变量选取和数据预处理方法。某电厂实际运行结果表明,该模型的准确性较目前广泛应用的静态神经网络软测量模型有显著提高。该研究为磨煤机一次风量的测量提供了一定的理论基础。