论文部分内容阅读
针对转台伺服系统中的难以精确建模、易受摩擦和外界不确定干扰的影响等问题,提出了一种基于RBF神经网络的观测器,利用RBF神经可以逼近任意非线性连续函数的特性,逼近模型未知非线性函数f(?)和g(?),并利用观测器得到转速信号,结合滑模控制提高了系统的鲁棒性,实现了无需建模信息和速度测量的滑模控制系统。仿真结果表明,该方法可以实现高精度的位置和速度跟踪,同时也证明了该方法的鲁棒性和有效性,值得在其他非线性系统中推广。