论文部分内容阅读
The CoFe_2alloy(CF) was prepared by reducing CoFe_2O_4 in the H_2 ambient. Subsequently the CF sample was nitrided in the NH_3 atmosphere to produce the composite of CoFe_2N and CoFe_2. The magnetostriction, thermal expansion, resistivity and corrosion resistance of CF sample and the nitrided sample(CFN)at 1000?C were investigated. The saturation magnetostriction coefficiency λ_s and thermal expansion coefficient ? at 300 K for the nitrided CFN were 50 ppm and 10 ppm/K, respectively, approximately equal to those for the CF sample. However, compared with CF, CFN presents a decrease in temperature coefficient R_λ(300 K) of magnetostriction by 11%. The smaller resistivity and improved corrosion resistance in the H_2SO_4 solution may expand the applications of the CoFe_2 in the fields needing lower resistivity or in the acidic environment.
The CoFe_2alloy (CF) was prepared by reducing CoFe_2O_4 in the H_2 ambient. The CF sample was nitrided in the NH_3 atmosphere to produce the composite of CoFe_2N and CoFe_2. The magnetostriction, thermal expansion, resistivity and corrosion resistance of CF sample and the nitrided The saturation magnetostriction coefficiency λ_s and thermal expansion coefficient at at 300 K for the nitrided CFN were 50 ppm and 10 ppm / K, respectively, approximately equal to those for the CF sample. However, Compared with CF, CFN presents a decrease in temperature coefficient R_λ (300 K) of magnetostriction by 11%. The smaller resistivity and improved corrosion resistance in the H_2SO_4 solution may expand the applications of the CoFe_2 in the fields needing lower resistivity or in the acidic environment.