论文部分内容阅读
提出一种关联数据驱动的数字图书推荐模型,为了实现向用户提供跨数据源的推荐服务,首先把图书馆的本地数据与外部相关的关联数据相融合,根据图书馆资源信息的不同的特性,分别构建用户社会关系语义本体知识库与数字图书语义本体知识库,并根据用户对图书浏览的活跃程度,针对不同的用户,采取不同的推荐策略,实现对用户推荐服务的全覆盖。
In order to provide users with recommendation services across data sources, this paper proposes a new model of digital book recommendation model driven by association data. First, the local data of the library are fused with the related data of external correlation. According to the different characteristics of library resource information, The semantic ontology knowledge base and digital book semantic ontology knowledge base of user relationship are respectively constructed, and different recommendation strategies are adopted for different users according to the activity degree of book browsing, so as to realize the full coverage of user recommendation services.